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Abstract

The automated heart murmur detection has become in-
creasingly relevant to aid the medical diagnosis. The
George B. Moody PhysioNet Challenge 2022 proposed a
similar problem to encourage research in this field

Our team’s (AIMS-LAB) approach focuses on an accu-
rate classification method using segmented S1, S2, sys-
tole, and diastole sections. A custom segmentation pro-
cess was developed based on wavelet decomposition and
Shannon entropy (WT-SE) for detecting the heart sounds,
then later the systole and diastole regions could be deter-
mined. Along with this algorithm, a Hidden Semi-Markov
Model (HSMM) was trained for comparing the results. To
help segmentation a breathing noise suppression step was
also developed. Multiple types of features were obtained
for each segment, in time domain, frequency domain, and
other features (e.g. Lyapunov exponent). Dimension-
ality reduction on the extracted feature-space was per-
formed with two approaches, principal component analy-
sis (PCA) and analysis of variance (ANOVA). For classifi-
cation a support vector machine (SVM) and random forest
(RF) was tested. Locally a 10-fold cross-validation was
performed. During the official phase the best validation
scores were 0.574 for the murmur and 9178 for the out-
come task. We did not receive an official test score.

1. Introduction

In the 2022 George B. Moody PhysioNet challenge a
difficult task was presented, to classify heart murmurs and
clinical outcomes of patients based on only phonocardio-
graphical (PCG) data. The teams were provided with over
3500 segmented recordings from 942 patients, labeled for
containing murmurs and clinical outcomes of the patients
[1, 2]. This was similar to the 2016 PhysioNet challenge
where only normal and abnormal classification had to be
performed. For this previous challenge multiple entries
received an accuracy score above 0.80, one example be-
ing by Goda and Hajas [3]. Here the authors utilized

most notably frequency and wavelet decomposition based
features for classification with a support vector machine
(SVM). This work was notable since it achieved a rela-
tively high score without using any neural-networks (NN).
Another high scoring submission which did not employ
NNs was by Homsi et al., in which the authors imple-
mented an ensemble classifier with extracted features from
the segmented signal [4]. This model used a random for-
est (RF) with LogitBoost, and a cost-sensitive classifier
(CSC). These results inspired us to work with more con-
ventional machine learning methods, although NNs were
the most popular machine learning model in this past chal-
lenge.

2. Methods and materials

Our process consisted of five major stages, preprocess-
ing, segmentation, feature extraction, dimensionality re-
duction, and classification as seen in Figure 1.

2.1. Preprocessing

All recordings were resampled to 1000 Hz, to reduce
the amount of memory used by the following steps. The
first and last second of each signal was rejected, since in
most cases these regions contained noise bursts coming
from the recording equipment. After this a wavelet-based
denoising was performed with the coif5 family and SURE
algorithm, based on the results of [5]. At the breathing
suppression phase the fact that these noises contain higher
frequencies and they appear with a different periodicity
(0.5-1 Hz) compared to heart sounds (1-2 Hz) was utilized.
First a nonlinear dynamic range expansion was performed
to accentuate the breathing and the heart sounds with the
expander Matlab function (threshold -25 dB, ratio 7, at-
tack 100 ms, hold 300 ms, release 500 ms). Figure 2b
shows a result from this expansion. The expanded signal
was filtered with a 10th order high-pass Butterworth fil-
ter at 200 Hz. Next the root mean square (RMS) envelope
was calculated and scaled to have an amplitude close to the
original signal values. This result can be seen in Figure 2c.
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Figure 1: The main stages of our process with their respective steps. Interchangeable steps are shown with a double arrow
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Figure 2: Main stages in breathing suppression. (a) Sig-
nal with breathing noises (b) Dynamic range expanded sig-
nal (c) Envelope after nonlinear scaling (d) Signal with re-
duced breathing noises

After subtracting its mean the Fourier transform of the en-
velope was obtained, to find the rough periodicity estimate
of the high frequency events. In case the measurement was
short enough not to contain a breathing event, or the res-
piratory sounds was too subtle, a higher overall periodic-
ity was observable on the spectrum, as shown in Figure 3.
This way noisy signals could be selected, and the suppres-
sion could be performed. The scaled envelope values were
used as an amplitude reduction factor, meaning at higher
values the amplitude of the original signal was lowered
corresponding to the envelope value. Then finally a dy-
namic range compression was performed on the amplitude
reduced signal, so that the incidental murmurs could be en-
hanced without the breathing noises. The compression was
done with the compressor Matlab function (threshold -
25 dB, ratio 5, attack 100 ms, release 500 ms). The final
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Figure 3: Comparison between the envelope spectra, with
their maxima labelled. (a) Signal with breathing noises (b)
Signal without breathing noises

result is shown in Figure 2d. This suppression method was
most useful as a preprocessing step for the various segmen-
tation methods but this process was also performed on the
original signals before feature extraction, although with a
high pass filter set to 250 Hz instead.

2.2. Segmentation

The preprocessed signal was then decomposed with db6
wavelets and the fourth level was chosen for further pro-
cessing. The Shannon entropy (SE) envelope was calcu-
lated and smoothed out with a moving mean filter with a
60 ms window [6] on this decomposition level. Next, the
instantaneous phase of this envelope was computed by us-
ing its Hilbert transform, and positive slope zero-crossings
were considered as a sound event. Then, a predefined time
interval centered around each of these events was taken,
and the centroid of their RMS was labeled as the times-
tamps of the events. After this refinement, certain events
moved closer to each other enough to be considered the
same event. With a minimal time difference threshold
these dense labels were filtered out. The main steps of this
process are illustrated in Figure 4, along with the detected
heart sounds. Using this method the S1 and S2 sounds
could be detected with acceptable accuracy. However, the
given sounds were not differentiated, and in order to cate-
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Figure 4: WT-SE segmentation, dashed lines mark the de-
tected heart sounds. (a) Input signal (b) Fourth wavelet
detail (c) Shannon entropy (d) Instantaneous phase, red cir-
cles mark the positive slope zero-crossings

gorize them, the systole and diastole intervals of the heart
cycle were localized. For this a simple length based rule
was implemented, because on average the length of a sys-
tole is shorter than that of the diastole. The next step con-
sisted of finding the start and end of each event, so that
these intervals could be segmented from the original sig-
nal. This was achieved by finding the left and right first
locations where the RMS value dropped below a set per-
centage (60%) of the one at the centroid. This process was
used for the heart sounds and the sections between them
were considered to be systole and diastole regions. For fur-
ther accuracy the length of these inter-sound regions were
kept consistent by an outlier removal and a maximal and
minimal accepted length. A Hidden Semi-Markov Model
(HSMM) was also trained to segment the recordings based
on Springer’s implementation [7]. These results were then
compared with the previously described wavelet and Shan-
non entropy (WT-SE) method.

2.3. Feature extraction

For each patient only the recordings with known loca-
tions were used, meaning the AV, MV, PV, and TV la-
beled recordings. Each recording was processed the same
way, after preprocessing and segmentation S1, systole, S2,
and diastole sections were separated and the same features
were calculated for each heart cycle segment along with
certain features for the entire signal. The features were av-
eraged along the heart cycle segments and their standard
deviations were also included. The final feature vector

for each patient consisted of different statistical measures
between these averages and standard deviations for each
recording. These measures include: minimum, maximum,
mean, median, variance, and standard deviation. The time
domain features consisted of the length of the segment, the
root mean square (RMS) value, kurtosis, zero cross rate,
and heart rate variability (HRV). For HRV the RMS of suc-
cessive differences method (RMSSD) was used. This fea-
ture was calculated only by using the onset times of the S1
sounds. All other calculations were done the conventional
way. In the frequency domain two intervals in the spectrum
of the segment was selected, one between 5-30 Hz for low
frequency content and another between 45-70 Hz for high
frequencies. In these regions the frequency with the largest
amplitude was obtained, along with the standard devia-
tion at that point. A different partitioning was chosen for
low and high frequency energy calculation, being a simple
threshold at 35 Hz. The energy ratio of these sections to
the total amount of energy was obtained. Spectral kurtosis
was calculated from the kurtosis of the frequency spectrum
of the segment. Other features include the wavelet energy
and Lyapunov exponent of the segment [8, 9]. From the
wavelet decomposition of the signal with the db6 family,
the first detail coefficients were chosen and the energy was
calculated. Lyapunov exponent was calculated with a time
delay of 5 ms and an embedding dimension of 3, for both
the original signal and the first wavelet detail. The final set
of extracted features used the entire recording for calcula-
tion. These included the kurtosis, three frequency energy
ratios (24-144 Hz, 144-200 Hz, 200-500 Hz), and the max-
imum peak of the autocorrelation between 0.3 s and 2.5 s
based on [10]. All other available biometrical data was
also included.

2.4. Classification

Principal component analysis (PCA) and feature selec-
tion based on analysis of variance (ANOVA) was used sep-
arately as dimensionality reduction methods. With PCA
the threshold of explained variance was set to 99%, while
with ANOVA based feature selection was set to include
the 110 best scoring features. For classification two main
methods were considered: support vector machines (SVM)
and random forests (RF) with AdaBoost, both have shown
good performance previously [3, 4]. While training the
models custom misclassification costs were set. In mur-
mur classification, misclassified ”Present” cases were set
to a cost of 5 while misclassified ”Unknown” cases were
set to 3. In clinical outcome classification, misclassified
”Abnormal” cases had a cost of 2. The SVM used stan-
dardized features and a linear kernel, with the box con-
straint parameter set to 1. The boosted RF had a learning
rate of 0.1 and 60 learners in its ensemble, with maximum
branching set to 20.
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Training Validation Test Ranking
0.66 0.574 - -

Table 1: Weighted accuracy metric scores (official Chal-
lenge score) for our final selected entry (AIMS-LAB) for
the murmur detection task

Training Validation Test Ranking
12284 9178 - -

Table 2: Cost metric scores (official Challenge score) for
our final selected entry (AIMS-LAB) for the clinical out-
come identification task

3. Results

For local results 10-fold cross-validation was used to get
an estimate of the performance of the given model. For
the murmur classifier the weighted accuracy, and for clin-
ical outcome classifier the mean cost score was used. We
compared the different methods for segmentation (HSMM,
WT-SE) with the ground truth (GT), dimensionality reduc-
tion (PCA, ANOVA), and classification (SVM, RF). Final
scores can be seen in summary tables 1 and 2. Our team
did not receive an official test score. Detailed results for
local validation can be seen in Table 3 and Table 4.

4. Conclusion and discussion

Based on these results, an SVM classifier was used in
murmur classification and RF was used in clinical outcome
prediction, both with HSMM segmentation and ANOVA
feature selection. Interestingly, in most cases both tested
segmentation methods outperformed the GT segmentation
in terms of classification. This is most likely due to that
not all heart cycles were labeled manually in a recording
and that resulted in slightly biased features.

Classifier PCA ANOVA
HSMM WT-SE GT HSMM WT-SE GT

SVM 0.38 0.46 0.38 0.66 0.66 0.59
RF 0.47 0.46 0.47 0.64 0.61 0.58

Table 3: Murmur classifier validation scores

Classifier PCA ANOVA
HSMM WT-SE GT HSMM WT-SE GT

SVM 13065 14714 12548 12404 12890 12740
RF 13690 13884 14193 12284 11759 11498

Table 4: Outcome classifier validation scores
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